Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570485

RESUMO

Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.

2.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630892

RESUMO

Owing to a strong photothermal response in the near-IR spectral range and very low toxicity, titanium nitride (TiN) nanoparticles (NPs) synthesized by pulsed laser ablation in liquids (PLAL) present a novel appealing object for photo-induced therapy of cancer, but the properties of these NPs still require detailed investigation. Here, we have elaborated methods of femtosecond laser ablation from the TiN target in a variety of liquid solutions, including acetonitrile, dimethylformamide, acetone, water, and H2O2, to synthesize TiN NPs and clarify the effect of liquid type on the composition and properties of the formed NPs. The ablation in all solvents led to the formation of spherical NPs with a mean size depending on the liquid type, while the composition of the NPs ranged from partly oxidized TiN to almost pure TiO2, which conditioned variations of plasmonic peak in the region of relative tissue transparency (670-700 nm). The degree of NP oxidation depended on the solvent, with much stronger oxidation for NPs prepared in aqueous solutions (especially in H2O2), while the ablation in organic solvents resulted in a partial formation of titanium carbides as by-products. The obtained results contribute to better understanding of the processes in reactive PLAL and can be used to design TiN NPs with desired properties for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...